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On the deformation and drag of a falling viscous 
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The motion a t  low Reynolds number of a drop in a quiescent unbounded fluid 
is investigated theoretically by means of a singular-perturbation solution of 
the axisymmetric equations of motion. Special attention is paid to the deforma- 
tion of the drop. It is shown that for small values of the Weber number We the 
drop will first deform exactly into an oblate spheroid and then, with a further 
increase in We, into a geometry approaching that of a spherical cap. These results 
are quite insensitive to the ratio of the viscosities of the two fluid phases. The 
first-order effect of the deformation on the drag of the drop is also included in 
the analysis. 

~ ~~ 

1. Introduction 
Interest in the motion of liquid drops and gas bubbles in a fluid medium has 

existed for many years and has resulted in a number of experimental and theo- 
retical investigations of the laws governing this phenomenon which, from a 
practical point of view, is of considerable importance in various processes such 
as extraction and atomization. I n  most of these studies, the matter of drop 
deformation was found to require special attention because of the well-known 
influence which it exerts on the dynamics of such objects. Thus, although 
‘small’ bubbles and drops are always found to be spherical, it has been observed 
experimentally (Haberman & Morton 1953) that an increase in their size is 
accompanied by a change in their shape from spherical to ellipsoidal to a spherical 
cap, with a corresponding effect on their terminal velocity, internal circulation, 
and stability. It is clear, therefore, that before the subject of drop and bubble 
dynamics can be placed on a firm basis, it is necessary that the factors which 
bring about deformation and the influence which this deformation can exert on 
the macroscopic parameters of the flow, such as the drag, be first quantitatively 
understood. 

It is the purpose of this theoretical study to investigate one aspect of this 
general topic by restricting the analysis to the low-Reynolds-number range. 
This, as may be recalled, was attempted by Saito (1913) some years ago, but, 
in view of a fundamental error in Saito’s work, a reinvestigation of this problem 
seemed desirable because of the valuable information its successful solution 
would provide. 
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We begin by considering the motion of a drop in an unbounded, quiescent 
fluid. Dimensionless variables will be employed throughout the analysis, and 
physical parameters pertaining to the interior of the drop will be distinguished 
from the corresponding exterior parameters by a caret. Also, a fixed spherical 
co-ordinate system will be used with its origin a t  the centre of mass of the drop. 

Of particular importance in this investigation are the boundary conditions 
at the surface of this drop. These are readily available (Scriven 1960) if the 
fluids are immiscible, the surface tension is constant, the surface viscosity effects 
are negligible and axial symmetry is postulated. Thus, if R = 1 + <(p) is the 
equation for the surface of the drop, with p = cos 8, i t  follows that, at r = R ( p ) ,  

u1 = at, 

where 7 represent the shear stress, N the normal stress, We the Weber number 
(paU2/a) ,  u, the tangential velocity component, u, the normal velocity component, 
c the interfacial tension, p the density of the exterior fluid, a the radius of the 
'equivalent ' spherical drop, U the terminal velocity of the drop, and R, and R2 
the two principal radii of curvature of the drop surface. The above have been 
made dimensionless by dividing all stresses byptJ2, all velocities by U and all 
distances by a. 

It is convenient now to express these boundary conditions in terms of the 
spherical co-ordinates r and ,u and the corresponding spherical velocity com- 
ponents u, and uo, with the requirement that max 1<(p)1 < 1 since the analysis 
will deal with drops which depart only slightly from a spherical shape. Then, if 

one can show that 

r = ( r , , - r , , ) s inacosx+r , , (~os~a-s in~a)~~, , -  ( 7 , - ~ ~ ~ ) ( 1  -,uZ)*d</d,u, ( 2 a )  

ilr = 7, cos2 x + r,, sin2 a - 2rr, cos a sin CL + T,, + 3rro( 1 - p2)* d{/d,u, ( 2  b )  

u1 = uo cos a + u, sin x + u, - u, ( 1  -,us)* dc/d,u, (") 

U, = u , c 0 s ~ - u , s i n x ~ ~ 6 , - t ~ ~ ( l - , u ~ ) ~ d ~ / d , u ,  ( 2 d )  

while (Landau & Lifschitz 19591, as 151 -+ 0, 

Here, r,,, rro, and roo are the conventional components of the stress tensor 
in spherical co-ordinates (Pai 1956). In the present dimensionless notation, for 
example, and for incompressible fluids, 

3 au 2 K  ah,. 
Re ar Re at- Trr=-p+--, and +,,=-p+--, 

30-2 
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where Re = Ua/v is t,he Reynolds number and K the ratio of the viscosity of the 
interior to that of exterior fluid. 

I n  view of the axial symmetry of the flow, it is possible next to express the 
equations of motion in terms of the stream functions @ and $, so that 

for the exterior region R(p) < r < co, and 

for the region inside the drop. Here 

a(@, D2@)/a ( r ,p )  is the Jacobian of @ and D2@ with respect to r and p, and y is 
the ratio of the density of the interior to that of the exterior fluid. Equations (4) 
and ( 5 )  must now be solved subject to the boundary conditions given by equa- 
tions (1)-(3), and to the requirement that 

@ +  &r2(1-,u2) as r+m, (6) 

which corresponds, a t  infinity, to the condition of free streaming relative to the 
centre of mass of the drop. 

It should be remarked a t  this point, however, that equation (lb) is not a 
boundary condition in the strict sense of the word. It is instead an equation for 
determining C(p), and thereby the deformation of the drop, as a function of We, 
Re, K and y ,  which are the parameters of the system. Of course, since thermo- 
dynamic considerations easily lead to the conclusion that max 1C(,u)1 -+ 0 as 
U + 0, one might expect C(p) to be linear in 17 for small terminal velocities. 
And yet, surprisingly enough, the deformation becomes proportioned to U2, 
rather than to U ,  as U +- 0. This result, also noted by Saito (1913), will now 
be discussed in some detail. 

2. The creeping flow solution 
As is already well known, the solution of equations (4) and (5), with the inertia 

terms set identically equal to zero everywhere in the flow field, was arrived a t  
some years ago by Hadamard (191 1) andby Rybczynski (191 1) under the assump- 
tion that the drop remained exactly spherical. This solution, denoted by $o 
and go, for the regions outside and inside the drop respectively, describes the 
motion correctly only in the limit Re +- 0 and is given by 

1 -/A2 &2-3? L '1 
$0 = 7 [ K + l r + K + l r  

and @ A (1-pz)(r2-r4) . 

4 ( K  + 1) 0 -  
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The corresponding pressure field is easily shown to  be 

O -  U2’ ~ + 1  2r2Re’ 
qlZ 3 K f 2  f /  p - y-- -~ 

469 

where g is the gravitational acceleration, if the pressure a t  p = 0 and r $ 1 
is arbitrarily set equal to zero. Similarly, for the region inside the drop, 

where II is an undetermilled constant. Now, because of equations (1 b) ,  (2b )  and 
( 3 )  

We 
r,, - r,, = -- __ 

from which [ is to be determined subject to the conditions that 

since the characteristic length a has been set equal to the radius of the ‘equiva- 
lent ’ spherical drop, and 

-1 

J <pap = 0 for maxI<(,u)I 1, 
-1 

since the origin of the co-ordinate system has been chosen to coincide with the 
centre of mass of the drop. From an overall force balance, however, 

where FD ( = drag/dpU2) is the dimensionless drag on the drop. I n  our case 

From this it clearly follows that 

II = 2/We and [(p) = 0, 

if <(,a) is also to satisfy equations (9) and (9a.). Thus, as observed by Saito (1913), 
the drop will remain s p h e r h l  for all values of the Weber number, as long as 
the inertia terms of the equations of motion can be safely neglected in the flow 
field both inside and outside the drop. 

3. Inertial effects 
It is apparent from the above results that deformation is caused by inertia 

effects, and that these need to be included in our analysis. At first, it  might seem 
logical to attack equations (4) and (5) by means of an iterative procedure in 
which the inertia terms would be obtained from the lower order approximations, 
but, since it is known that in problems of uniform streaming at infinity the 
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creeping flow solution does not provide a uniform approximation to all the required 
properties of the flow, one should not expect such a straightforward perturbation 
expansion to generate a valid result. Thus, in view of the fact that Saito’s (1913) 
analysis is based on precisely such a classical perturbation technique, it is not 
surprising that his solution is incorrect and that i t  does not satisfy the boundary 
condition of uniform streaming at infinity. 

Fortunately, a correct way of overcoming this difficulty has been described 
recently by Proudman & Pearson (1057), who applied the method of singular 
perturbation expansions (see also Baplun & Lagerstrom 1957) to the classical 
problem of improving the Stokes solution for the flow past a solid sphere, a 
problem which is clearly similar, in many respects, to the one a t  present under 
consideration. The same method of approach will therefore be adopted here, and 
the work of Proudman & Pearson will serve as a constant reference for many of 
the details of the analysis which follows. 

An important point in the development of the singular perturbation expansion 
is concerned with the failure of the creeping flow solution, as given by equation 
(7a) ,  to provide a uniform approximation to the flow as r + co. Thus, when 
r $ 1,  it is necessary to replace $o by an appropriate ‘outer ’ solution which, in 
this case, satisfies the familiar Oseen equation and also a matching requirement 
with the Stokes solution (Proudman & Pearson 1957). In  particular, by referring 
to Proudman & Pearson and to equation (7a )  we can easily show that, in the 
‘outer ’ region, the stream function-denoted here by ‘€-is given by 

2 

Ee2Y 2 = q l - p z ) - 2 0  3K + Re ( 1  +,u) [ 1 - e-:p(l-F)] + O(Re2),  ( 1  1 )  

where p = Re r .  
It is now possible to proceed with the solution of the problem by letting 

$ = $ o + R e $ l + . . .  for r > 1 + <  ( l 2 U )  

and $ = go+Re$,+ ... for 0 < r < 1+<, (126) 
with the understanding that equation (12a) is to hold only throughout the 
‘ Stokes’ region and that an appropriate matching requirement between equa- 
tions (11) and (12a) is also to be satisfied. Of course, the equations for $1 and 

follow directly from equations (4) and ( 5 ) ,  respectively, if the inertia terms are 
approximated by means of the corresponding zero-order solutions $o and q0. 
Thus, 

where 

( 1 3 )  

in which P,(,u) is the Legendre polynomial of degree n. Furthermore, since hy 
coincidence go also satisfies the complete equation (5) , 

D4$, = 0. (11) 
A particular integral of equation (13) is 
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and the complete solution of equation (13) that vanishes both a t  r = 1 and, 
because of symmetry, a t  ,LL = & 1, is, therefore, 

+ B,(rn+' - r-n ) + G n ( ~ - n + 2  - rn I> Qn(P)* 

This must now be matched to the 'outer' solution given by equation (11). 
It is easily seen, however, that, if only those terms up to and including O ( R e )  are 
retained, 

while, in the (p,,u) variables, 

'x 

+ {AnRe-npn+3 + B,Re-"f2pn+l) Qn(p) .  
n = l  

Hence the matching requirement is satisfied if 
13K-l-2 

An=O for n,> 1, B, = 0 for n 2 3, B 
I -  8 K + l '  

Therefore 

m 

+ 2 Cn[r-n+2-r-n IQ,(Pu). (15) 
?&=I 

Similarly, a solution of (14) which vanishes at r = 1 and a t  ,u = k 1, and which, 
for all 0 < r 6 1, yields finite velocities, is 

m 
$, = 3 8, [rn+3 - rn+l] Q,(p). 

?L= 1 

The coefficients C, and en can finally be determined by making use of equa- 
tions (1  a )  and (1 c) which yield 

1 ~ ( 3 ~ + 2 ) ( 5 ~ + 6 )  

and 



472 T.  D. Taylor and Andreas Acrioos 

4. The deformation of the drop 
The solution just obtained can now be used to calculate the deformation of the 

drop for small values of the Weber number, We. First, however, it  is necessary 
to determine the normal stresses a t  the surface of the drop. This may be accomp- 
lished in a straightforward, although somewhat tedious manner, by noting that, 
up to an additive constant, the pressure distribution a t  r = 1 may be derived 
quite readily by integrating with respect t o p  the apporpriate equation of motion, 
evaluated at r = 1, containing the term ap/i3p. Thus, if, for example, a t  r = 1, 

p =p,,+Repl+ ... 

T,, = 7::) + Re7-b;) + ..., and 
i t  can be shown t,hat 

and that 

1, 
Re 7::) = - 1 ___ 3 ~ + 2  ( 3 ( ~  + 2 )  PI@) - ____ P Z ( f 4  [ 1 5 ~ ~  + 4 3 ~  + 301 

16 ( K +  1)2 5(K + 1) 
(19) 

where II, is a constant. SimilarIy, for the region inside the drop and again for 

Finally, since (Taylor 1962; Brenner & Cox 1963) 

i t  folloivs from equations ( I b ) ,  (3), (8), (lo), (19) and (30) that 

- ____ ?- - P (p )  + rI1- ii1 
1 2 ( K +  1 ) 2  

and, therefore, because of equations (9) and (Ba,), 

We can clearly see then, that, for small values of We, the drop will deform 
exactly into a spheroid. This result is in qualitative, but not quantitative, agree- 
ment with Saito’s (1913) conclusion even though, as was mentioned earlier, 
Saito’s analysis was based on an incorrect approach. In  principle, the spheroid 
can, of course, be both oblate or prolate depending on whether the coefficient 
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multiplying the function P2(,u) is, respectively, negative or positive. Yet, because, 
according to equation (21), {/P2(p) < 0 even for drops of mercury in water 
(y  = 13.6, K N 1)  one can safely conclude that in all cases of physical significance 
the drop will be deformed into an oblate rather than a prolate spheroid. As a 
matter of fact, i t  is interesting to  note that the deformation is only slightly 
affected by the viscosity of the interior phase since, for very viscous drops 

{ = - 0.25 WeP2(,u), 

whereas for the geometrically opposite limitiiig case of small gas bubbles 

5. The drag and higher-order deformation of a slightly deformed drop 
The effect of the deformation on the drop can now be determined by a ' creeping 

flow ' analysis of the appropriate equations of motion for the flow past a slightly 
deformed drop. Thus, if once again inertia effects are completely neglected, we 
can set 

and (23) 

where all the coefficients Bn, CYn,  B,, e,, are, to a first approximation O(1). 
These can in turn be determined from fhe boundary conditions, a t  

r = 1 - A  WeP2(p), 

as given by (1) and (2). The straightforward but tedious computations, which will 
not be reported here, yield 

(26) 

The drag can now be obtained immediately from (24), since for creeping flow 
(Payne & Pel1 1960) 
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which may in turn be combined with a recent result (Brenner & Cox 1963) to  
yield 

( 2 7 )  

where, of course, the last term represents the effect of the deformation to O( W e ) .  
The terminal velocity of the drop may then be determined by combining (27) 
with (10). 

The solution just derived may also be used to generate an expression for the 
deformation 1; up to O( We2/Re). Thus, it can be shown from equations (24) and 
(25) and the appropriate equations of motion, that, a t  r = 1 - A  WeP, and up 
to an additive constant, 

3 ~ + 6  ga h We Pl 
Pl(p) + - ( 1  - h We P2) PI+ -~ -- (12 + 2 7 ~ -  2 1 ~ ~ )  

7- = F((lc+rjBe U2 1 0 ( ~ +  1)2Re 

h We P3 
~ O ( K +  1) Re 

+ - ~ -  __ ( 9 ~  - 426) + Re 7(1) 
7 r r ,  (28) 

where 7::) is given by (19). Similarly, 

hWeP, 5 8 2 ~  
+--- __ + Re +::)-- II (29) 1 0 ( ~ + 1 ) R e  7 

and, therefore, because of equations ( l b ) ,  ( 2 b ) ,  (3)t ,  ( lo),  (27), as well as our 

3h( 1 1 ~  + 10) We2 
~ O ( K  + 1) Re 

earlier results, 
5 = - h We P2(,u) - -- - -P3(p)+ ..., 

with h given by (26). Thus, according to (30) and in agreement with the experi- 
mental observations (Haberman & Morton 1953) the drop will first deform into 
an oblate spheroid and then, with a further increase in the Weber number, into 
a geometry approaching that of a spherical cap. 

6. Concluding remarks 
The principal results of this theoretical analysis are contained in equations (27) 

and (30) which depict quantitatively the nature of the drop deformation a t  low 
Reynolds numbers and the influence which this deformation can exert on the 
drag of the drop. These equations may now be recast into a more convenient 
form, in which only one of the dimensionless groups, the Reynolds number Re, 
contains U ,  by noting that We = (pw2/ac) Re2. Thus, we can express the deforma- 

3 h ( l l ~ +  10) pv2 tion by 
Re2 P2(p) -  - ~ - -  Re3P3(,u)+ ..., (30') 7 0 ( ~ + 1 )  (a&) 

t It should be noted that W e  is O(Re2).  Consequently, the deformation C: is also O(Re2).  
Thus, the linearized boundary conditions, ( 3 )  and (3), are still applicable to the present 
analysis since the 5' terms would be O(Re4). 
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whereas, for the drag, we obtain 

Re ~ K ~ - K + S  pv2 ( F  F , ) - = A -  - - .  ~ - Re2+ ..., 11- f l s p h  3n 5 ( ~ +  1)2 ( a r )  
(37‘) 

where FDsph denotes the appropriate dimensionless drag of a spherical drop. 
It should be kept in mind of course that the analysis just presented contains 

a number of limitations which we shall presently discuss. To begin with, we 
must require that (pvZ/ao-) Re2 be small in view of our assumption that the 
drop is ‘almost spherical ’. Also, it is clear that our results are of significance only 
as long as both Re < O( 1)  and ( Y / K )  Re < O( I ) ,  since the theoretical development 
was based on a perturbation expansion about the creeping flow solution of the 
equations of motion, both inside and outside the drop. And finally, since it can 
easily be shown that the term of O(Re21n Re) which appears in the expansion 
for $ in the case of a spherical drop (Proudman & Pearson 1957) does not con- 
tribute to the deformation-this term is after all only a multiple of the appro- 
priate ‘Stokes’ solution, equation ( 7 ) ,  which, as we have seen, satisfies auto- 
matically the requirement of normal stress continuity across the drop interface- 
i t  follows that (30) will contain a term of O(Re We)  which arises from the O(Re2) 
term in the expansion for $. Thus, (30’) should contain a term of O(pv2 Re2/aa) 
which is of the same order of magnitude in Re as the second term in that equation. 
For the same reason, an additional term of O(Re2) should appear in (27)-but 
not in equation (37‘) since this term has already been incorporated in F’,,,. 
Thus, if we are to retain in equations (27), (30) and (30’) only those terms which 
are shown, we must impose the further restriction that pv2/ar $ 1.  This last 
condition is, however, difficult to achieve in general, owing to the small numerical 
values of 1’ for most fluids. Consequently, it appears that, although included for 
completeness, the last term in (37), (30) and (30’) would be of little significance 
in many cases of practical interest since each of these equations should contain 
in addition another term, of equal order of magnitude in Re to the one shown last. 

A few remarks should finally be added concerning the possible influence of 
surface active agents on the results of this paper. This is necessary, because 
repeated experimental investigations (Griffith 1963) have firmly established that 
even small amounts of surfactants can have a profound influence on the terminal 
velocity and on the internal circulation of drops and bubbles. 

The most likely explanation for this observation was originally provided by 
Frumkin & Levich (1947; see also Levich 1963). According to their theory, during 
the fall of a drop surfactant molecules are swept to the rear portion of its surface 
thus setting up a composition gradient, and therefore a surface tension gradient, 
which in turn opposes the motion of the liquid along the interface. On the 
basis of this model and by means of a theoretical analysis of the appropriate 
creeping flow equations, Frumkin & Levich were then able to derive an expres- 
sion for the drag similar to equation ( 1 0 ~ )  with, however, ( K  + k/a)  instead of 
K ,  where k is a function of the amount and the type of surfactant present, and 
a is the radius of the sphere. The Frumkin & Levich solution also satisfies the 
normal stress balance a t  the surface of the drop, exactly as was the case with 
equations (7a) and (7 b) .  Thus it would appear that the presence of surfactants 
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should have no influence on the shape of the drop, which would still remain 
spherical, and that their only effect would be to increase the viscosity ratio K by 
an amount equal to kja. 

These conclusions, which are based on the Frumkin & Levich theory, are of 
course applicable only as long as the inertia effects can be neglected. On the 
other hand, since the deformation of the drop, as given by equation (30), is so 
insensitive to the numerical value of K, one would naturally expect, in view of 
what has been said above, that equation (30) would also remain relatively 
unaffected by the presence of surfactants. It would seem, therefore, that whereas 
the internal circulation of drops can indeed be profoundly influenced by the 
addition of surfactants to the system, the shape of a falling drop is determined 
primarily by the hydrodynamic forces and the static surface tension, and to a 
lesser extent by the presence of surface active molecules along the surface. 

This work was performed in part a t  the Chemical Engineering Department, 
University of California, Berkeley, and was supported by grants from the 
National Science Foundation and from the Petroleum Research Fund admini- 
stered by the American Chemical Society. 
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